Journal articles
2024
Dimensional crossover in a quantum gas of light1
K. Karkihalli Umesh, J. Schulz, J. Schmitt, M. Weitz, G. von Freymann, and F. Vewinger
Nature Physics 20, 1810–1815 (2024)
SharedIt-Version2 (read-only)
News and Views by Arturo Camacho-Guardian: Photon gas crosses dimensions3
Bose-Einstein Condensation of Photons in a Four-Site Quantum Ring4
A. Redmann, C. Kurtscheid, N. Wolf, F. Vewinger, J. Schmitt, and M. Weitz
Phys. Rev. Lett. 133, 093602 (2024)
Periodic quantum Rabi model with cold atoms at deep strong coupling5
G. Hunanyan, J. Koch, S. Moll, E. Rico, E. Solano, and M. Weitz
Phys. Rev. Res. 6, 033023 (2024)
Observation of Nonlinear Response and Onsager Regression in a Photon Bose-Einstein Condensate6
A. Sazhin, V. N. Gladilin, A. Erglis, G. Hellmann, F. Vewinger, M. Weitz, M. Wouters, and J. Schmitt
Nature Commun. 15, 4730 (2024), arXiv:2403.047057
Absorption and Emission Spectral Data of Room-temperature Rhodamine 6G Dye Solution and some typical Dye Microcavity parameters (Dataset)8
J. Schmitt, M. Weitz, and J. Klaers
Zenodo (2024)
2023
Two-photon excitation and absorption spectroscopy of gaseous and supercritical xenon9
T. vom Hövel, F. Huybrechts, E. Boltersdorf, C. Wahl, F. Vewinger, and M. Weitz
Phys. Rev. A 108, 012821 (2023), arXiv:2304.1280310
Sunlight-pumped two-dimensional thermalized photon gas11
E. Busley, L. Espert Miranda, C. Kurtscheid, F. Wolf, F. Vewinger, J. Schmitt, and M. Weitz
Phys. Rev. A 107, 052204 (2023), arXiv:2207.1207012
Chiral edge dynamics and quantum Hall physics in synthetic dimensions with an atomic erbium Bose-Einstein condensate13
R. Röll, A.W. Laskar, F. Huybrechts, and M. Weitz
Phys. Rev. A 107, 043302, arXiv:2210.0987414
Quantum Rabi dynamics of trapped atoms far in the deep strong coupling regime15
J. Koch, G. Hunanyan, T. Ockenfels, E. Rico, E. Solano, and M. Weitz
Nature Communications 14, 954 (2023), arXiv:2112.1248816
Fluctuation-dissipation relation for a Bose-Einstein condensate of photons17
F. Öztürk, F. Vewinger, M. Weitz, and J. Schmitt
Phys. Rev. Lett. 130, 033602 (2023), arXiv:2203.132518
2022
Spectroscopy of high-pressure rubidium-nobel-gas mixtures19
T. Ockenfels, P. Roje, T. vom Hövel, F. Vewinger, and M. Weitz
Phys. Rev. A 106, 012815 (2022), arXiv:2203.135820
Kompressibles Quantengas aus Licht21
E. Busley, L. Espert Miranda, M. Weitz, and J. Schmitt
Phys. in unserer Zeit 53, 166 (2022)
Compressibility and the equation of state of an optical gas in a box22
E. Busley, L. Espert Miranda, A. Redmann, C. Kurtscheid, K. Karkihalli Umesh, F. Vewinger, M. Weitz, and J. Schmitt
Science 375, 1403 (2022), arXiv.org: 2112.1278723, Science Perspective24
Fluctuation-dissipation relation for a Bose-Einstein condensate of photons18
F. Öztürk, F. Vewinger, M. Weitz and J. Schmitt
arXiv:2203.1325 18
2021
Phasen eines Bose-Einstein-Kondensats aus Licht53
F. Öztürk, J. Schmitt, J. Kroha, and M. Weitz
Phys. in unserer Zeit 52, 162 (2021)
Sapphire optical viewport for high pressure and temperature applications54,
T. Ockenfels, F. Vewinger, and M. Weitz
Rev. Sci. Instrum. 92, 065109 (2021); arXiv:2106.0955955
Observation of a non-Hermitian phase transition in an optical quantum gas56
F. Öztürk, T. Lappe, G. Hellmann, J. Schmitt, J. Klaers, F. Vewinger, J. Kroha, and M. Weitz
Science 372, 6537 (2021), arXiv:2010.1582957
Vacuum-ultraviolet absorption and emission spectroscopy of gaseous, liquid, and supercritical xenon58
C. Wahl, M. Hoffmann, T. v. Hoevel, F. Vewinger, and M. Weitz
Phys. Rev. A 103, 022831 (2021), arXiv:2011.1413159
2020
Realizing arbitrary trapping potentials for light via direct laser writing of mirror surface profiles60
C. Kurtscheid, D. Dung, A. Redmann, E. Busley, J. Klaers, F. Vewinger, J. Schmitt, and M. Weitz
Europhys. Lett. 130, 54001 (2020), arXiv: 2007.0031261
Levitated cavity optomechanics in high vacuum62
U. Delic, D. Grass, M. Reisenbauer, T. Damm, M. Weitz, N. Kiesel, and M. Aspelmeyer
Quantum Sci. Technol. 5, 025006 (2020), arXiv: 1902.0660563
Synthetic magnetic fields for cold erbium atoms64
D. Babik, R. Roell, D.Helten, M. Fleischhauer, and M. Weitz
Phys. Rev. A 101, 053603 (2020)
2019
Thermally condensing photons into a coherently split state of light65
C. Kurtscheid, D. Dung, E. Busley, F. Vewinger, A. Rosch, and M. Weitz
Science 366, 894 (2019), arXiv:1911.0659366
Fluctuation dynamics of an open photon Bose-Einstein condensate67
F. Öztürk, T. Lappe, G. Hellmann, J. Schmitt, J. Klaers, F. Vewinger, H. Kroha, and M. Weitz
Phys. Rev. A 100, 043803 (2019), arXiv:1908.0088368
2018
Rubidium spectroscopy in high-pressure buffer gas conditions: detailed balance in the optical interactions of an absorber coupled to a reservoir69
S. Christopoulos, P. Moroshkin, L. Weller, B. Gerwers, R. Forge, T. Ockenfels, F. Vewinger, and M. Weitz
Physica Scripta 93, 12 (2018), arXiv:1911.1258670
Dynamics and correlations of a Bose-Einstein condensate of photons71
J. Schmitt
J. Phys. B: At. Mol. Opt. 51, 173001 (2018), arXiv:1807.0874772
2017
Thermo-optical interactions in a dye-microcavity photon Bose–Einstein condensate73
H. Alaeian, M. Schedensack, C. Bartels, D. Peterseim, and M.Weitz
New J. Phys. 19, 115009 (2017), arXiv: 1710.0170674
Variable potentials for thermalized light and coupled condensates75
D. Dung, C. Kurtscheid, T. Damm, J. Schmitt, F. Vewinger, M. Weitz, and J. Klaers
Nature Photonics 11, 565 (2017), arXiv: 1707.0678976
First-order spatial coherence measurements in a thermalized two-dimensional photonic quantum gas77
T. Damm, D. Dung, F. Vewinger, M. Weitz, and J. Schmitt
Nature Communications 8, 158 (2017), arXiv: 1707.0446278
Bose-Einstein condensations of photons and grand-canonical condensate fluctuations
J. Klaers and M. Weitz
in Universal Themes of Bose-Einstein Condensation, N.P. Proukakis, C.W. Snoke and P.B. Littlewood (Eds.), Cambridge University Press, Cambridge, 2017, arXiv: 1611.1028679
Bose-Einstein condensation of erbium atoms in a quasielectrostatic optical dipole trap80
J. Ulitzsch, D. Babik, R. Roell, and M. Weitz
Phys. Rev. A 95, 043614 (2017), arXiv: 1704. 0531581
Verifying thermodynamic equilibrium of molecular manifolds: Kennard-Stepanov spectroscopy of a molecular gas82
S. Christopoulos, D. Möller, R. Cota, B. Gerwers and M. Weitz
Phys. Rev. A 95, 022510 (2017), arXiv: 1703.0665083
Laser Cooling of Dense Gases by Collisional Redistribution of Radiation
A. Sass, S. Christopoulos, and M. Weitz
in Laser Cooling: Fundamental Properties and Applications, G. Nemova (Ed.), Pan Stanford Publishing, Singapore, 2017
Quantum Rabi model in the Brillouin zone with ultracold atoms84
S. Felicetti, E. Rico, C. Sabin, T. Ockenfels, J. Koch, M. Leder, C. Grossert, M. Weitz, and E. Solano
Phys. Rev. A 95, 013827 (2017), arXiv: 1606.0547185
2016
Bose-Einstein Condensate of Photons versus Lasing and Hanbury-Twiss Measurements with a Condensate of Light86
J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers, and M. Weitz
Proceedings of the XXII International Conference on Laser Spectroscopy (World Scientific, Singapore, 2016), arXiv: 1606.0901587
Absorption spectroscopy of xenon and ethylene–noble gas mixtures at high pressure: towards Bose–Einstein condensation of vacuum ultraviolet photons88
C. Wahl, R. Brausemann, J. Schmitt, F. Vewinger, S. Christopoulos, and M. Weitz
Appl. Phys. B 122, 296 (2016), arXiv:1608.0050289
Real-space imaging of a topological protected edge state with ultracold atoms in an amplitude-chirped optical lattice90
M. Leder, C. Grossert, L. Sitta, M. Genske, A. Rosch, and M. Weitz
Nature Communications 7, 13112 (2016), arXiv: 1604.0206091
Phase dependent loading of Bloch bands and quantum simulation of relativistic wave equation predictions with ultracold atoms in variably optical lattice potentials92
C. Grossert, M. Leder, and M. Weitz
J. Mod. Opt. 63, 1805 (2016), arXiv: 1510.0905093
Calorimetry of a Bose-Einstein-condensed photon gas94
T. Damm, J. Schmitt, Q. Liang, D, Dung, F. Vewinger, M. Weitz, and J. Klaers
Nature Communications 7, 11340 (2016), arXiv 1604.0874795
Experimental control of transport resonances in a coherent quantum rocking ratchet96
C. Grossert, M. Leder, S. Denisov, P. Hänggi, and M. Weitz
Nature Communications 7, 10440 (2016), arXiv: 1407.060597
Spontaneous symmetry breaking and phase coherence of a Photon Bose-Einstein condensate coupled to a reservoir98
J.Schmitt, T. Damm, D. Dung, C. Wahl, F. Vewinger, J. Klaers, and M. Weitz
Phys. Rev. Lett. 116, 033604 (2016), arXiv: 1512.0714899
2015
Resonance retrieval of stored coherence in an rf-optical double-resonance experiment100
Vladimir Djokic, Georg Enzian, Frank Vewinger, and Martin Weitz
Phys. Rev. A 92, 06380 (2015), arXiv: 1510.02672101
Thermalization kinetics of light: From laser dynamics to equilibrium condensation of photons102
J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers, and M. Weitz
Phys. Rev. A 92, 011602 (2015),arXiv: 1410.5713103
Laser-induced cooling of broadband heat reservoirs102
D. Gelbwaser-Klimovsky, K. Szcygielski, U. Vogl, A. Saß, R. Alicki, G. Kurizki, and M. Weitz
Phys. Rev. A 91, 023431 (2015), arXiv: 1502.08019104
2014
The thermalization, condensation and flickering of photons105
J. Klaers
J. Phys. B: At. Mol. Opt. 47, 243001 (2014)
Kennard-Stepanov relation connecting absorption and emission spectra in an atomic gas106
P. Moroshkin, L. Weller, A. Sass, J. Klaers, and M. Weitz
Phys. Rev. Lett. 113, 063002 (2014), arXiv:1401.0731107
Laser cooling of dense atomic gases by collisional redistribution of radiation and spectroscopy of molecular dimers in a dense buffer gas environment108
A. Sass, R. Forge, S. Christopoulos, K. Knicker, P. Moroshkin, and M. Weitz
Proc. SPIE 9000, 90000A (2014), arXiv:1401.1828109
Veselago lensing with ultraclod atoms in an optical lattice110
M. Leder, C. Grossert, and M. Weitz
Nature Communications 5, 3327 (2014), arXiv:1402.3132111
Observation of grand-canonical number statistics in a photon Bose-Einstein condensate112
J. Schmitt, T. Damm, D. Dung, F. Vewinger, J. Klaers, and M. Weitz
Phys. Rev. Lett. 112, 030401 (2014), arXiv:1311.6634113, Physics Viewpoint
2013
Optomechanical generation of a photon Bose-Einstein condensate114
M. Weitz, J. Klaers, and F. Vewinger
Phys. Rev. A 88, 045601 (2013), arXiv: 1211.4793115
Bose-Einstein condensation of photons in a microscopic optical resonator: towards photonic lattices and coupled cavities116
J. Klaers, J. Schmitt, T. Damm, D. Dung, F. Vewinger, and M. Weitz
Proc. SPIE 8600, 86000L (2013), arXiv:1303.5772117
Towards redistribution laser cooling of molecular gases: Production of candidate molecules SrH by laser ablation118
P. Simon, P. Moroshkin, L. Weller, A. Sass, and M. Weitz
SPIE 8638, 86380C (2013), arXiv:1303.5233119
Tuning the mobility of a driven Bose-Einstein condensate via diabatic Floquet bands120
T. Salger, S. Kling, S. Denisov, A. V. Ponomarev, P. Haenggi, and M. Weitz
Phys. Rev. Lett. 110, 135302 (2013), arXiv:1202.5174121
Bose-Einstein condensation of photons
J. Klaers and M. Weitz
in Novel superfluids, Vol. 1, K. H. Bennemann und J. B. Ketterson (eds.)
(Oxford University Press, Oxford 2013), arXiv: 1210.7707122
also published in New developments in photon and materials research, J. I. Jang (ed.)
(Nova publishers, New York, 2013)
2012
Bose-Einstein condensation for trapped atomic polaritons in a biconical waveguide cavity123
Y. Chestnov, A. Alodjants, A. Arakelian, J. Klaers, F. Vewinger, and M. Weitz
Phys. Rev. A 85, 053648 (2012), arXiv: 1205.3063124
Thermalization of a two-dimensional photon gas in a polymeric host matrix125
J. Schmitt, T. Damm, F. Vewinger, M. Weitz, and J. Klaers
New J. Phys. 14, 075019 (2012), arXiv:1201.4658126
Statistical physics of Bose-Einstein-condensed light in a dye microcavity127
J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and M. Weitz
Phys. Rev. Lett. 108, 160403 (2012), arXiv:1201.0444128
Laser cooling of dense rubidium-noble gas mixtures via collisional redistribution of radiation129
U. Vogl, A. Sass, and M. Weitz
Proc. SPIE 8275, 827508 (2012), arXiv:1209.2465130
Doppler-free frequency modulation spectroscopy of atomic erbium in a hollow cathode discharge cell
H. Brammer, J. Ulitzsch, R. Bourouis, and M. Weitz
Appl. Phys. B 106, 405 /2012), arXiv:1109.0434131
2011
Klein-Tunneling of a quasirelativistic Bose-Einstein condensate in an optical lattice132
T. Salger, C. Grossert, S. Kling, and M. Weitz
Phys. Rev. Lett. 107, 240401(2011), arXiv:1108.4447133
Bose–Einstein condensation of paraxial light
J. Klaers, J. Schmitt, T. Damm, F. Vewinger, and M. Weitz
Appl. Phys. B 105, 17 (2011), arXiv:1109.4023134
Collisional Redistribution Laser Cooling of a High Pressure Atomic Gas135
U. Vogl, A. Sass, S. Hasselmann, and M. Weitz
J. Mod. Opt. 58, 1300 (2011), arXiv:1102.3740136
Effective Dirac dynamics of ultracold atoms in bichromatic optical lattices137
D. Witthaut, T. Salger, S. Kling, C. Grossert, and M. Weitz
Phys. Rev A 84, 033601 (2011), arXiv:1102.4047138
Production of sodium Bose-Einstein condensates in an optical dimple trap139
D. Jacob, E. Mimoun, L. De Sarlo, M. Weitz, J. Dalibard, and F. Gerbier
New J. Phys. 13, 065022 (2011), arXiv:1104.1009140
Light confinement by a cylindrical metallic waveguide in a dense buffer-gas environment141
U. Vogl, A. Sass, F. Vewinger, M. Weitz, Solovev, A., Y. Mei, and O. Schmidt
Phys. Rev. A 83, 053403 (2011), arXiv:1012.1388142
Bose-Einstein-Kondensat aus Licht143
J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz
Phys. Unserer Zeit 42, 58 (2011)
Laser cooling of a potassium-argon gas mixture using collisional redistribution of radiation
A. Saß, U. Vogl, and M. Weitz
Appl. Phys. B 102, 503 (2011), arXiv:1102.0414144
Bose-Einstein condensation of photons in a 'white-wall' photon box145
J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz
in Journal of Physics: Conference Series, (ICAP 2010 Proceedings), 264, 012005 (2011)
2010
Vom Licht gekühlt146
U. Vogl and M. Weitz
Forschung 4, 23 (2010)
Bose-Einstein condensation of photons in an optical microcavity147
J. Klaers, J. Schmitt, F. Vewinger, and M. Weitz
Nature 468, 545 (2010), arXiv:1007.4088148, Nature News & Views149
Atomic Bloch-Zener oscillations and Stückelberg interferometry in optical lattices150
S. Kling, T. Salger, C. Grossert, and M. Weitz
Phys. Rev. Lett. 105, 215301 (2010), arXiv:1006.2358151
Thermalization of a two-dimensional photonic gas in a ‘white wall’ photon box152
J. Klaers, F. Vewinger, and M. Weitz
Nature Phys. 6, 512 (2010), arXiv:1004.2956153
Thermalization of coupled atom-light states in the presence of optical collisions154
I.Yu. Chestnov, A.P. Alodjants, S.M. Arakelian, J. Nipper, U. Vogl, F. Vewinger, and M. Weitz
Phys. Rev. A 81, 053843 (2010), arXiv:0812.3997155
Quantenratsche für ultrakalte Atome156
T. Salger and M. Weitz
Phys. Unserer Zeit 41, 110 (2010)
Nondispersive optics using storage of light157
L. Karpa and M. Weitz
Phys. Rev. A 81, 041802(R) (2010), arXiv:1003.3389158
Atomic Bose-Einstein condensates in optical lattices with variable spatial symmetry159
S. Kling, T. Salger, C. Geckeler, G. Ritt, J. Plumhof, and M. Weitz
in Nonlinearities in Periodic Structures and Metamaterials
C. Denz, S. Flach, and Y. Kivshar (editors)
(Springer, Heidelberg, 2010), p. 195
2009
Atom-based Test of the Equivalence Principle160
S. Fray and M. Weitz
Space Sci. Rev. 148, 225 (2009)
Directed Transport of Atoms in a Hamiltonian Quantum Ratchet161
T. Salger, S. Kling, T. Hecking, C. Geckeler, L. Morales-Molina, and M. Weitz
Science 326, 1241 (2009), arXiv:0912.0102162
Laser Cooling by Collisional Redistribution of Radiation163
U. Vogl and M. Weitz
Nature 461, 70 (2009), arXiv:0906.2904164, News and Views165
Frequency matching in light storage spectroscopy of atomic Raman transitions166
L. Karpa, G. Nikoghosyan, F. Vewinger, M. Fleischhauer, and M. Weitz
Phys. Rev. Lett. 103, 093601 (2009), arXiv: 0905.4649167
Bloch oscillations of atoms in an optical multiphoton potential168
T. Salger, G. Ritt, C. Geckeler, S. Kling, and M. Weitz
Phys. Rev. A 79, 011605(R) (2009), arXiv:0711.1772169
2008
Resonance beating of light stored using atomic spinor polaritons170
L. Karpa, F. Vewinger, and M. Weitz
Phys. Rev. Lett. 101, 170406 (2008)
Spectroscopy of atomic rubidium at 500 bar buffer gas pressure:
approaching the thermal equilibrium of dressed atom-light states171
U. Vogl and M. Weitz
Phys. Rev. A 78, 011401 (2008)
Slow light in inhomogeneous and transverse fields172
L. Karpa and M. Weitz
New J. Phys. 10, 045015 (2008)
Interference of an array of atom lasers173
G. Cennini, C. Geckeler, G. Ritt, and M. Weitz
Phys. Rev. A 77, 013613 (2008)
2007
Atomic Landau-Zener tunneling in Fourier-synthesized optical lattices174
T. Salger, C. Geckeler, S. Kling, and M. Weitz
Phys. Rev. Lett. 99, 190405 (2007); Erratum: Phys. Rev. Lett. 106, 129903 (2011)175
Resonant Feshbach scattering of fermions in one-dimensional optical lattices176
M. Grupp, R. Walser, W.P. Schleich, A. Muramatsu, and M. Weitz
J. Phys. B: At. Mol. Opt. Phys. 40, 2703 (2007
2006
Fourier Synthesis of Conservative Atom Potentials177
G. Ritt, C. Geckeler, T. Salger, G. Cennini, and M. Weitz
Phys. Rev. A 74, 063622 (2006)
Two-Dimensional Bose-Einstein Condensates in a CO2-laser Optical Lattice178
G. Cennini, C. Geckeler, G. Ritt, T. Salger, and M. Weitz
Fortschr. Physik 54, 719 (2006)
A Stern-Gerlach Experiment for Slow Light179
L. Karpa and M. Weitz
Nature Physics 2, 332 (2006)
2005
Interference of a Variable Number of Coherent Atomic Sources180
G. Cennini, C. Geckeler, G. Ritt, and M. Weitz
Phys. Rev. A 72, 051601(R) (2005)
Dark Resonances with Variable Doppler Sensitivity181
C. Bolkart, D. Rostohar, and M. Weitz
Phys. Rev. A 71, 043816 (2005)
Äquivalenzprinzip gilt auch für Quantenobjekte
S. Fray, T. W. Hänsch, and M. Weitz
Phys. Unserer Zeit 36, 60 (2005)
Coherent and BCS-Type Quantum States of Dark Polaritons182
C. Bolkart, R. Weiss, D. Rostohar, and M. Weitz
Las. Phys. 15, 3 (2005)
2004
Atomic Interferometer with Amplitude Gratings of Light and its Applications to Atom Based Tests of the Equivalence Principle183
S. Fray, C. Alvarez Diez, T. W. Hänsch, and M. Weitz
Phys. Rev. Lett. 93, 240404 (2004)
Optical Multiphoton Lattices184
M. Weitz, G. Cennini, G. Ritt, and C. Geckeler
Phys. Rev. A 70, 043414 (2004); and Virtual Journal of Ultrafast Science, Volume 3, November 2004
Laser Frequency Offset Locking using a Side of Filter Technique185
G. Ritt, G. Cennini, C. Geckeler, and M. Weitz
Appl. Phys. B 79, 363 (2004)
All-Optical Realization of an Atom Laser Based on Field-Insensitive Bose-Einstein Condensates186
G. Cennini, G. Ritt, C. Geckeler, and M. Weitz
in Laser Spectroscopy XVI, P. Hannaford, A. Sidorov, H. Bachor, and K. Baldwin (eds.)
(World Scientific, Singapore, 2004), p. 187
2003
All-Optical Realization of an Atom Laser187
G. Cennini, G. Ritt, C. Geckeler, and M. Weitz
Phys. Rev. Lett. 91, 240408 (2003)
Bose–Einstein Condensation in a CO2-Laser Optical Dipole Trap188
G. Cennini, G. Ritt, C. Geckeler, and M. Weitz
Appl. Phys. B 77, 773 (2003)
Towards Quantum Logic with Cold Atoms in a CO2-Laser Optical Lattice189
G. Cennini, G. Ritt, C. Geckeler, R. Scheunemann, and M. Weitz
in Quantum Information Technology, G. Leuchs and T. Beth (eds.)
(Wiley-VCH, Weinheim, 2003)
2002
Hydrogen Atom Interferometer with Short Light Pulses190
T. Heupel, M. Mei, M. Niering, B. Gross, M. Weitz, T. W. Hänsch, and Ch. J. Bordé
Europhys. Lett. 57, 158 (2002)
Rydberg Constant
T. W. Hänsch and M. Weitz
in McGraw-Hill Encyclopedia of Science & Technology
(McGraw-Hill, New York, 2002)
Multiple-Beam Atom Interferometry: An Overview191
M. Mei, S. Nic Chormaic, S. Fray, and M. Weitz
in Laser Physics at the Limit, H. Figger, D. Meschede, and C. Zimmermann (eds.)
(Springer-Verlag, Berlin, 2002)
2001
Superresolution of Pulsed Multiphoton Raman Transitions192
F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz
Phys. Rev. Lett. 87, 113601 (2001)
Controlled Decoherence in Multiple Beam Ramsey Interference193
M. Mei and M. Weitz
Phys. Rev. Lett. 86, 559 (2001)
Multiple-Beam Ramsey Interference and Quantum Decoherence194
M. Mei and M. Weitz
Appl. Phys. B 72, 91 (2001)
High Resolution Spectroscopy of Atomic Hydrogen195
M. Fischer, M. Niering, R. Holzwarth, J. Reichert, Th. Udem , M. Weitz, and T. W. Hänsch
in Spectral Line Shapes 11, J. Seidel (ed.)
(AIP, Melville, 2001), p. 249
Measuring the Frequency of Light with Mode-Locked Lasers
T. Udem, J. Reichert, R. Holzwarth, M. Niering, M. Weitz, and T. W. Hänsch
in Frequency Measurement and Control: Advanced Techniques and Future Trends, A. N. Luiten (ed.)
(Springer-Verlag, Berlin, 2001), p. 275
2000
Tensorial Phases in Multiple Beam Atomic Interference196
M. Mei, T. W. Hänsch, and M. Weitz
Phys. Rev. A 61, 020101 (R) (2000)
Frequency Independent Laser Cooling Based on Interferometry197
M. Weitz and T. W. Hänsch
Europhys. Lett. 49, 302 (2000)
Phase Coherent Vacuum-Ultraviolet to Radio Frequency Comparison with a Mode-Locked Laser198
J. Reichert, M. Niering, R. Holzwarth, M. Weitz, T. Udem, and T. W. Hänsch
Phys. Rev. Lett. 84, 3232 (2000)
Measurement of the Hydrogen 1S-2S Transition Frequency by Phase Coherent Comparison with a Microwave Cesium Fountain Clock199
M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch,
P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon
Phys. Rev. Lett. 84, 5496 (2000)
Resolving and Addressing Atoms in Individual Sites of a CO2-Laser Optical Lattice200
R. Scheunemann, F. S. Cataliotti, T. W. Hänsch, and M. Weitz
Phys. Rev. A 62, 051801 (R) (2000)
An Optical Lattice with Single Lattice Site Optical Control for Quantum Engineering201
R. Scheunemann, F. S. Cataliotti, T. W. Hänsch, and M. Weitz
J. Opt. B. 2, 645 (2000)
Towards Controlling Larger Quantum Systems: From Laser Cooling to Quantum Computing202
M. Weitz
IEEE J. Quantum Electron. QE-36, 1346 (2000)
Addressing Single Sites of a CO2-Laser Optical Lattice203
F. S. Cataliotti, R. Scheunemann, T. W. Hänsch, and M. Weitz
in Bose-Einstein Condensates and Atom Lasers, S. Martellucci, A. N. Chester, A. Aspect, and M. Inguscio (eds.)
(Kluwer Academic/ Plenum Publishers, New York, 2000), p. 275
1999
High Resolution Spectroscopy of the 1S-2S Transition in Atomic Hydrogen204
A. Huber, B. Gross, M. Weitz, and T. W. Hänsch
Phys. Rev. A 59, 1844 (1999)
Measuring Optical Frequencies with Femtosecond Light Pulses
R. Holzwarth, J. Reichert, M. Niering, M. Weitz, T. Udem, and T. W. Hänsch
in Laser Spectroscopy XIV, R. Blatt, J. Eschner, D. Leibfried, and F. Schmidt-Kaler (eds.)
(World Scientific, Singapore, 1999), p. 347
1998
CO2-Laser Optical Lattice with Cold Rubidium Atoms205
S. Friebel, C. D'Andrea, J. Walz, M. Weitz, and T. W. Hänsch
Phys. Rev. A 57, R20 (1998)
Two-Photon Optical Ramsey Spectroscopy of the 1S-2S Transition in Atomic Hydrogen206
A. Huber, B. Gross, M. Weitz, and T. W. Hänsch
Phys. Rev. A 58, R2631 (1998)
Optical Ramsey Spectroscopy of Atomic Hydrogen207
B. Gross, A. Huber, M. Niering, M. Weitz, and T. W. Hänsch
Europhys. Lett. 44, 186 (1998)
Laser Cooling in a CO2-Laser Optical Lattice208
S. Friebel, R. Scheunemann, J. Walz, T. W. Hänsch, and M. Weitz
Appl. Phys. B 67, 699 (1998)
Hydrogen-Deuterium 1S-2S Isotope Shift and the Structure of the Deuteron209
A. Huber, T. Udem, B. Gross, J. Reichert, M. Kourogi, K. Pachucki, M. Weitz,
and T. W. Hänsch
Phys. Rev. Lett. 80, 468 (1998)
Phase-Coherent Frequency Measurement of the Hydrogen 1S-2S Transition and its Isotope Shift
T. Udem, A. Huber, J. Reichert, B. Gross, M. Prevedelli, M. Weitz, T. W. Hänsch,
and M. Kourogi
in Laser Spectroscopy XIII, Z. Wang, Z. Zhang, and Y. Wang (eds.)
(World Scientific, Singapore, 1998), p. 87
Multiple Beam Atom Interferometer210
M. Weitz, T. Heupel, and T. W. Hänsch
in Laser Spectroscopy XIII, Z. Wang, Z. Zhang, and Y. Wang (eds.)
(World Scientific, Singapore, 1998), p. 248
1997
Collapse and Revival of the Fringe Pattern in a Multiple Beam Atom Interferometer211
M. Weitz, T. Heupel, and T. W. Hänsch
Europhys. Lett. 37, 517 (1997)
Cavity Enhanced CW Stimulated Brillouin Scattering in a Fused Silica Plate212
T. Heupel, M. Weitz, S. Chu, and T. W. Hänsch
Opt. Commun. 140, 281 (1997)
Phase-Coherent Measurement of the Hydrogen 1S-2S Transition Frequency with an Optical Frequency Interval Divider Chain213
T. Udem, A. Huber, B. Gross, J. Reichert, M. Prevedelli, M. Weitz, and T. W. Hänsch
Phys. Rev. Lett. 79, 2646 (1997)
Phase-Coherent Measurement of the Hydrogen 1S-2S Frequency with an Optical Frequency Interval Divider Chain214
T. Udem, A. Huber, M. Weitz, D. Leibfried, W. König, M. Prevedelli, S. Dimitriev, H. Geiger, and T. W. Hänsch
IEEE Trans. Instr. Meas. IM-46, 166 (1997)
Phase-Coherent Light Pulses for Atom Optics and Interferometry215
T. Heupel, M. Weitz, and T. W. Hänsch
Opt. Lett. 22, 1719 (1997)
Multiple-Beam Atomic Interferometer: Theory and Experiment216
M. Weitz, T. Heupel, and T. W. Hänsch
Appl. Phys. B 65, 713 (1997)
Vielstrahl-Atominterferometer
M. Weitz, T. Heupel, and T. W. Hänsch
Phys. Bl. 53, 883 (1997)
1996
Theory of the Energy Levels and Precise Two-Photon Spectroscopy of Atomic Hydrogen and Deuterium217
K. Pachucki, D. Leibfried, M. Weitz, A. Huber, W. König, and T. W. Hänsch
J. Phys. B 29, 177 (1996)
Multiple Beam Atomic Interferometer218
M. Weitz, T. Heupel, and T. W. Hänsch
Phys. Rev. Lett. 77, 2356 (1996)
Precision Spectroscopy in Atomic Hydrogen
D. Leibfried, H. Geiger, A. Huber, W. König, K. Pachucki, M. Prevedelli, T. Udem, J. Walz,
M. Weitz, C. Zimmermann, and T. W. Hänsch
in Laser Spectroscopy XII, M. Inguscio, M. Allegrini, and A. Sasso (eds.)
(World Scientific, Singapore, 1996), p. 83
Frequency Independent Laser Cooling Based on Interferometry219
M. Weitz and T. W. Hänsch
in Laser Spectroscopy XII, M. Inguscio, M. Allegrini, and A. Sasso (eds.)
(World Scientific, Singapore, 1996), p. 132
Precision Measurements in Atomic Hydrogen
M. Weitz, D. Leibfried, A. Huber, H. Geiger, W. König, M. Prevedelli, T. Udem, T. Heupel,
K. Pachucki, and T. W. Hänsch
in Frequency Standards and Metrology, J. C. Bergquist (ed.)
(World Scientific, Singapore, 1996), p. 137
Atom Interferometers and Precision Measurements
B. C. Young, M. Weitz, J. M. Hensley, and S. Chu
in Frequency Standards and Metrology, J. C. Bergquist (ed.)
(World Scientific, Singapore, 1996), p. 223
A Phase-Coherent Frequency Chain Connecting a Methane Stabilized He-Ne Laser to the Hydrogen La-Transition Frequency220
T. Udem, A. Huber, M. Weitz, D. Leibfried, W. König, M. Prevedelli, S. Dimitriev, and T. W. Hänsch
J. Helmcke and S. Penselin (eds.)
PTB-Opt-51 (Braunschweig, 1996), p. 77
Applications Laser Cooling and Trapping to Precision Measurements and Polymer Physics
B. C. Young, M. Weitz, J. Hensey, T. Perkins, D. Smith, S. Quake, and S. Chu
in Quantum Coherence and Decoherence, Foundations of Quantum Mechanics in the Light of New Technology
K. Fujikawa and Y. A. Ono (eds.)
(Elsevier, Amsterdam, 1996), p. 47
1995
High Resolution Spectroscopy of the 1S-2S Transition of Atomic Hydrogen and Deuterium221
F. Schmidt-Kaler, D. Leibfried, S. Seel, C. Zimmermann, W. König, M. Weitz, and T. W. Hänsch
Phys. Rev. A 51, 2789 (1995)
Precision Measurement of the 1S Ground State Lamb Shift in Atomic Hydrogen and Deuterium by Frequency Comparison222
M. Weitz, A. Huber, F. Schmidt-Kaler, D. Leibfried, W. Vassen, C. Zimmermann,
K. Pachucki, T. W. Hänsch, L. Julien, and F. Biraben
Phys. Rev. A 52, 2664 (1995)
Dipole Trapping, Cooling in Traps, and Long Coherence Times223
H.-J. Lee, C. Adams, N. Davidson, B. Young, M. Weitz, M. Kasevich, and S. Chu
in Proceedings of the Fourteenth International Conference on Atomic Physics
D. J. Wineland, C. E. Wieman, and S. J. Smith (eds.)
(American Institute of Physics, New York, 1995), p. 258
1994
Precision Measurement of the Hydrogen and Deuterium 1S Ground State Lamb Shift224
M. Weitz, A. Huber, F. Schmidt-Kaler, D. Leibfried, and T. W. Hänsch
Phys. Rev. Lett. 72, 328 (1994)
Theory of the Hydrogen-Deuterium Isotope Shift225
K. Pachucki, M. Weitz, and T. W. Hänsch
Phys. Rev. A 49, 2255 (1994)
Atom Manipulation Based on Delayed Laser Pulses in 3 and 4 Level Systems: Light Shifts and Transfer Efficiencies226
M. Weitz, B. C. Young, and S. Chu
Phys. Rev. A 50, 2438 (1994)
Atomic Interferometer Based on Adiabatic Population Transfer227
M. Weitz, B. C. Young, and S. Chu
Phys. Rev. Lett. 73, 2563 (1994)
Precision Laser Spectroscopy of Atomic Hydrogen228
T. W. Hänsch, T. Andreae, A. Huber, W. König, D. Leibfried, K. Pachucki, M. Prevedelli,
F. Schmidt-Kaler, M. Weitz, R. Wynands, and C. Zimmermann
in Laser Spectroscopy XI, L. Bloomfield, T. Gallagher and D. Larson (eds.)
(American Institute of Physics, New York, 1994), p. 3
New Atomic Interferometers for Precise Measurements of the Recoil Shift. Application to Atomic Hydrogen229
C. J. Bordé, M. Weitz, and T. W. Hänsch
in Laser Spectroscopy XI, L. Bloomfield, T. Gallagher and D. Larson (eds.)
(American Institute of Physics, New York, 1994), p. 76
High Resolution Spectroscopy of Atomic Hydrogen230
C. Zimmermann, A. Huber, W. König, D. Leibfried, F. Schmidt-Kaler, M. Weitz,
and T. W. Hänsch
in Particle Astrophysics, Atomic Physics and Gravitation, J. Tran Thanh Van, G. Fontaine, and E. Hinds (eds.)
(Edition Frontieres, France, 1994), p. 369
1993
Precision Measurement of the Isopope Shift of the 1S-2S Transition of Atomic Hydrogen and Deuterium231
F. Schmidt-Kaler, D. Leibfried, M. Weitz, and T. W. Hänsch
Phys. Rev. Lett. 70, 2261 (1993)
Phase-Matched Electrooptic Modulator at 84 GHz for Blue Light: Theory, Experimental Test and Applications232
D. Leibfried, F. Schmidt-Kaler, M. Weitz, and T. W. Hänsch
Appl. Phys. B 56, 65 (1993)
High Resolution Spectroscopy of the 1S-2S Transition in Atomic Hydrogen233
F. Schmidt-Kaler, T. Andreae, W. König, D. Leibfried, L. Ricci, M. Weitz, R. Wynands,
C. Zimmermann, and T. W. Hänsch
in Proceedings of the Thirteenth International Conference on Atomic Physics
H. Walther, T. W. Hänsch, and B. Neizert (eds.)
(American Institute of Physics, New York, 1993), p. 31
Frequency Stabilized Ti:Sapphire Laser for High Resolution Spectroscopy of Atomic Hydrogen234
M. Weitz, F. Schmidt-Kaler, and T. W. Hänsch
in Solid State Lasers, M. Inguscio, and R. Wallenstein (eds.)
(Plenum Press, New York, 1993), p. 331
Hochgenaue Vermessung des Grundzustands von Wasserstoff als Test der Quantenelektrodynamik235
M. Weitz
in Spektrum der Wissenschaft (Spektrum der Wissenschaft Verlagsgesellschaft, Heidelberg, September 1993),
p. 22
1992
Precise Optical Lamb Shift Measurements in Atomic Hydrogen236
M. Weitz, F. Schmidt-Kaler, and T. W. Hänsch
Phys. Rev. Lett. 68, 1120 (1992)
1991
High Power Ultraviolet Source with Extreme Frequency Stability
R. Kallenbach, F. Schmidt-Kaler, M. Weitz, C. Zimmermann, and T. W. Hänsch
Opt. Commun. 81, 63 (1991)
High Resolution Spectroscopy of the Hydrogen 1S-2S Transition in an Atomic Beam237
C. Zimmermann, F. Schmidt-Kaler, M. Weitz, D. Leibfried, T. W. Hänsch, R. Kallenbach,
and W. Vassen
J. C. Zorn and R. R. Lewis (eds.)
in Proceedings of the Twelfth International Conference on Atomic Physics (American Institute of Physics, New York, 1991), p. 366
Links
- https://doi.org/10.1038/s41567-024-02641-7
- https://rdcu.be/dTa5L
- https://doi.org/10.1038/s41567-024-02642-6
- https://doi.org/10.1103/PhysRevLett.133.093602
- https://doi.org/10.1103/PhysRevResearch.6.033023
- https://www.nature.com/articles/s41467-024-49064-9
- https://arxiv.org/abs/2403.04705
- https://zenodo.org/records/10852936
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.108.012821
- https://arxiv.org/abs/2304.12803
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.107.052204
- https://arxiv.org/abs/2207.12070
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.107.043302
- https://arxiv.org/abs/2210.09874
- https://www.nature.com/articles/s41467-023-36611-z.pdf
- https://arxiv.org/abs/2112.12488
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.033602
- https://arxiv.org/abs/2203.13255
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.106.012815
- https://arxiv.org/abs/2203.13580
- https://doi.org/10.1002/piuz.202270406
- https://www.science.org/stoken/author-tokens/ST-402/full
- https://arxiv.org/abs/2112.12787
- https://www.science.org/doi/10.1126/science.abo2856
- https://www.qostage.uni-bonn.de/en-us/publications#Pub2021
- https://www.qostage.uni-bonn.de/en-us/publications#Pub2020
- https://www.qostage.uni-bonn.de/en-us/publications#Pub2019
- https://www.qostage.uni-bonn.de/en-us/publications#Pub2018
- https://www.qostage.uni-bonn.de/en-us/publications#Pub2017
- https://www.qostage.uni-bonn.de/en-us/publications#Pub2016
- https://www.qostage.uni-bonn.de/en-us/publications#Pub2015
- https://www.qostage.uni-bonn.de/en-us/publications#Pub2014
- https://www.qostage.uni-bonn.de/en-us/publications#pub2010
- https://www.qostage.uni-bonn.de/en-us/publications#pub2009
- https://www.qostage.uni-bonn.de/en-us/publications#pub2008
- https://www.qostage.uni-bonn.de/en-us/publications#pub2007
- https://www.qostage.uni-bonn.de/en-us/publications#pub2006
- https://www.qostage.uni-bonn.de/en-us/publications#pub2005
- https://www.qostage.uni-bonn.de/en-us/publications#pub2004
- https://www.qostage.uni-bonn.de/en-us/publications#pub2003
- https://www.qostage.uni-bonn.de/en-us/publications#pub2002
- https://www.qostage.uni-bonn.de/en-us/publications#pub2001
- https://www.qostage.uni-bonn.de/en-us/publications#pub2000
- https://www.qostage.uni-bonn.de/en-us/publications#pub1999
- https://www.qostage.uni-bonn.de/en-us/publications#pub1998
- https://www.qostage.uni-bonn.de/en-us/publications#pub1997
- https://www.qostage.uni-bonn.de/en-us/publications#pub1996
- https://www.qostage.uni-bonn.de/en-us/publications#pub1995
- https://www.qostage.uni-bonn.de/en-us/publications#pub1994
- https://www.qostage.uni-bonn.de/en-us/publications#pub1993
- https://www.qostage.uni-bonn.de/en-us/publications#pub1992
- https://www.qostage.uni-bonn.de/en-us/publications#pub1991
- https://onlinelibrary.wiley.com/doi/10.1002/piuz.202170404
- https://aip.scitation.org/doi/full/10.1063/5.0047609
- https://arxiv.org/abs/2106.09559
- http://science.sciencemag.org/cgi/rapidpdf/372/6537/88?ijkey=E3tj1dY9WeEEg&keytype=ref&siteid=sci%20
- https://arxiv.org/abs/2010.15829
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.103.022831
- https://arxiv.org/abs/2011.14131
- https://iopscience.iop.org/article/10.1209/0295-5075/130/54001
- https://arxiv.org/abs/2007.00312
- https://iopscience.iop.org/article/10.1088/2058-9565/ab7989
- https://arxiv.org/abs/1902.06605
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.053603
- https://science.sciencemag.org/content/366/6467/894
- https://arxiv.org/abs/1911.06593
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.043803
- https://arxiv.org/abs/1908.00883
- http://iopscience.iop.org/article/10.1088/1402-4896/aae723/pdf
- https://arxiv.org/abs/1911.12586
- http://iopscience.iop.org/article/10.1088/1361-6455/aad409/meta
- https://arxiv.org/abs/1807.08747
- http://iopscience.iop.org/article/10.1088/1367-2630/aa964c/meta
- https://arxiv.org/abs/1710.01706
- https://www.nature.com/nphoton/journal/v11/n9/full/nphoton.2017.139.html
- https://arxiv.org/abs/1707.06789
- https://www.nature.com/articles/s41467-017-00270-8
- https://arxiv.org/abs/1707.04462
- https://arxiv.org/pdf/1611.10286.pdf
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.043614
- https://arxiv.org/abs/1704.05315
- http://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.022510
- https://arxiv.org/abs/1703.06650
- http://journals.aps.org/pra/abstract/10.1103/PhysRevA.95.013827
- https://arxiv.org/pdf/1606.05471.pdf
- http://www.worldscientific.com/doi/abs/10.1142/9789813200616_0008
- https://arxiv.org/abs/1606.09015
- http://link.springer.com/article/10.1007/s00340-016-6566-x
- https://arxiv.org/abs/1608.00502
- http://www.nature.com/articles/ncomms13112
- https://arxiv.org/abs/1604.02060
- http://www.tandfonline.com/doi/abs/10.1080/09500340.2015.1137370
- https://arxiv.org/abs/1510.09050
- http://www.nature.com/ncomms/2016/160419/ncomms11340/full/ncomms11340.html
- https://arxiv.org/abs/1604.08747
- http://nature.com/ncomms/2016/160208/ncomms10440/full/ncomms10440.html
- http://arxiv.org/abs/1407.0605
- http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.033604
- https://arxiv.org/abs/1512.07148
- http://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.063802
- https://arxiv.org/abs/1510.02672
- http://dx.doi.org/10.1103/PhysRevA.92.011602
- https://arxiv.org/abs/1410.5713
- http://arxiv.org/abs/1502.08019
- http://iopscience.iop.org/0953-4075/47/24/243001
- http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.063002
- http://arxiv.org/abs/1401.0731
- http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1833592
- http://arxiv.org/abs/1401.1828
- http://www.nature.com/ncomms/2014/140214/ncomms4327/full/ncomms4327.html
- http://arxiv.org/abs/1402.3132
- http://prl.aps.org/abstract/PRL/v112/i3/e030401
- http://arxiv.org/abs/1311.6634
- http://pra.aps.org/abstract/PRA/v88/i4/e045601
- http://arxiv.org/abs/1211.4793
- http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1655994
- http://arxiv.org/abs/1303.5772
- http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1666755
- http://arxiv.org/abs/1303.5233
- http://prl.aps.org/abstract/PRL/v110/i13/e135302
- http://arxiv.org/abs/1202.5174
- http://arxiv.org/abs/1210.7707
- http://pra.aps.org/abstract/PRA/v85/i5/e053648
- http://arxiv.org/abs/1205.3063
- http://iopscience.iop.org/1367-2630/14/7/075019
- http://arxiv.org/abs/1201.4658
- http://prl.aps.org/abstract/PRL/v108/i16/e160403
- http://arxiv.org/abs/1201.0444v1
- http://spiedigitallibrary.org/proceedings/resource/2/psisdg/8275/1/827508_1?isAuthorized=no
- http://arxiv.org/abs/1209.2465
- http://arxiv.org/abs/1109.0434
- http://prl.aps.org/abstract/PRL/v107/i24/e240401
- http://arxiv.org/abs/1108.4447
- http://arxiv.org/abs/1109.4023
- http://www.tandfonline.com/doi/abs/10.1080/09500340.2011.562616
- http://arxiv.org/abs/1102.3740
- http://pra.aps.org/abstract/PRA/v84/i3/e033601
- http://arxiv.org/abs/1102.4047
- http://iopscience.iop.org/1367-2630/13/6/065022
- http://arxiv.org/abs/1104.1009
- http://pra.aps.org/abstract/PRA/v83/i5/e053403
- http://arxiv.org/abs/1012.1388
- http://onlinelibrary.wiley.com/doi/10.1002/piuz.201190007/abstract
- http://arxiv.org/abs/1102.0414
- http://iopscience.iop.org/1742-6596/264/1/012005
- http://onlinelibrary.wiley.com/doi/10.1002/fors.201090062/abstract?systemMessage=Wiley+Online+Library+will+be+unavailable+on+Saturday+25th+March+from+07%3A00+GMT+%2F+03%3A00+EDT+%2F+15%3A00+SGT+for+4+hours+for+essential+maintenance.++Apologies+for+the+inconvenience.
- http://www.nature.com/nature/journal/v468/n7323/full/nature09567.html
- http://arxiv.org/abs/1007.4088
- http://www.nature.com/nature/journal/v468/n7323/full/468517a.html
- http://prl.aps.org/abstract/PRL/v105/i21/e215301
- http://arxiv.org/abs/1006.2358
- http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys1680.html
- http://arxiv.org/abs/1004.2956
- http://pra.aps.org/abstract/PRA/v81/i5/e053843
- http://arxiv.org/abs/0812.3997
- http://onlinelibrary.wiley.com/doi/10.1002/piuz.201090021/abstract
- http://pra.aps.org/abstract/PRA/v81/i4/e041802
- http://arxiv.org/abs/1003.3389
- https://www.qo.uni-bonn.de/daten/publikationen/weitz
- https://link.springer.com/article/10.1007/s11214-009-9566-x
- http://www.sciencemag.org/cgi/content/abstract/326/5957/1241
- http://arxiv.org/abs/0912.0102
- http://www.nature.com/nature/journal/v461/n7260/full/nature08203.html
- http://arxiv.org/abs/0906.2904
- http://www.nature.com/nphoton/journal/v3/n12/full/nphoton.2009.225.html
- http://prl.aps.org/abstract/PRL/v103/i9/e093601
- http://arxiv.org/abs/0905.4649
- http://pra.aps.org/abstract/PRA/v79/i1/e011605
- https://arxiv.org/abs/0711.1772
- https://www.qo.uni-bonn.de/daten/publikationen/physrevlett_101_170406
- https://www.qo.uni-bonn.de/daten/publikationen/physreva_78_011401
- https://www.qo.uni-bonn.de/daten/publikationen/slow-light-in-inhomogeneous-and-tranverse-fields
- https://www.qo.uni-bonn.de/daten/publikationen/cennini_08
- https://www.qo.uni-bonn.de/daten/publikationen/physreva_99_190405
- http://prl.aps.org/abstract/PRL/v106/i12/e129903
- https://iopscience.iop.org/article/10.1088/0953-4075/40/13/014
- https://www.qo.uni-bonn.de/daten/publikationen/physreva_fourier
- https://www.qo.uni-bonn.de/daten/publikationen/twodim_paper
- https://www.qo.uni-bonn.de/daten/publikationen/nphys284
- https://www.qo.uni-bonn.de/daten/publikationen/physreva_interference
- https://www.qo.uni-bonn.de/daten/publikationen/physreva_dark_resonances
- https://www.qo.uni-bonn.de/daten/publikationen/bolkart_laserphys
- https://www.qo.uni-bonn.de/daten/publikationen/physrevlett_atomic_interferometer
- https://www.qo.uni-bonn.de/daten/publikationen/physreva_multiphotonlattice
- https://www.qo.uni-bonn.de/daten/publikationen/applphysb_offsetlock
- https://www.worldscientific.com/doi/abs/10.1142/9789812703002_0029
- https://www.qo.uni-bonn.de/daten/publikationen/atomlaser
- https://www.qo.uni-bonn.de/daten/publikationen/applphysb_dipole
- https://www.qo.uni-bonn.de/daten/publikationen/qiv-weitz
- http://iopscience.iop.org/article/10.1209/epl/i2002-00556-5/meta
- https://link.springer.com/chapter/10.1007/978-3-662-04897-9_14
- https://www.qo.uni-bonn.de/daten/publikationen/superres_prl
- https://www.qo.uni-bonn.de/daten/publikationen/ww-prl01
- http://link.springer.com/article/10.1007/s003400000482
- https://aip.scitation.org/doi/abs/10.1063/1.1370633
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.61.020101
- http://iopscience.iop.org/article/10.1209/epl/i2000-00149-4/meta
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.84.3232
- https://pubmed.ncbi.nlm.nih.gov/10990978/
- https://www.qo.uni-bonn.de/daten/publikationen/pra_resolve00
- https://www.qo.uni-bonn.de/daten/publikationen/fe0wwmyl
- http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=892553&isnumber=19314
- https://link.springer.com/chapter/10.1007/0-306-47103-5_19
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.59.1844
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.57.R20
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.58.R2631
- https://www.qostage.uni-bonn.de/Optical%20Ramsey%20Spectroscopy%20of%20Atomic%20Hydrogen
- http://link.springer.com/article/10.1007%2Fs003400050568?LI=true
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.80.468
- https://opg.optica.org/abstract.cfm?uri=QELS-1997-QWE3
- https://www.qo.uni-bonn.de/daten/publikationen/epl_revivals
- https://www.qo.uni-bonn.de/daten/publikationen/heupel-cavity-enhanced-brilloui
- https://www.qo.uni-bonn.de/daten/publikationen/udem97
- https://ieeexplore.ieee.org/document/571803
- http://ol.osa.org/abstract.cfm?id=36431
- https://www.qo.uni-bonn.de/daten/publikationen/multbeam_applphysb
- http://iopscience.iop.org/article/10.1088/0953-4075/29/2/008
- https://www.qo.uni-bonn.de/daten/publikationen/multiplebeamprl
- https://iopscience.iop.org/article/10.1209/epl/i2000-00149-4
- https://www.qo.uni-bonn.de/daten/publikationen/ptb-berichte96
- https://pubmed.ncbi.nlm.nih.gov/9911910/
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.52.2664
- https://aip.scitation.org/doi/10.1063/1.2946010
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.72.328
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.49.2255
- https://journals.aps.org/pra/abstract/10.1103/PhysRevA.50.2438
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.73.2563
- https://aip.scitation.org/doi/abs/10.1063/1.45073?journalCode=apc
- https://aip.scitation.org/doi/abs/10.1063/1.45083?journalCode=apc
- https://inspirehep.net/files/b02f216f58956fc39c0bae623d5b26b5
- https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.70.2261
- https://link.springer.com/article/10.1007/BF00325242
- https://aip.scitation.org/doi/10.1063/1.43781
- https://link.springer.com/chapter/10.1007/978-1-4615-2998-9_23
- https://www.spektrum.de/magazin/hochgenaue-vermessung-des-grundzustands-von-wasserstoff-als-test-der-quantenelektrodynamik/821103
- https://www.qo.uni-bonn.de/daten/publikationen/p1120_1
- https://aip.scitation.org/doi/10.1063/1.40977